

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015

 ISSN: 2395-3470
www.ijseas.com

459

Optimization of ASIC Design Cycle Using Different
Verification Techniques

Maitrey PatelP

1
PR,RP

PChintan Raval P

2
P, Bhargav TarparaP

3
P

P

1, 2,
P M.Tech., VLSI, U.V.Patel College of2T 2TEngineering and Technology, Kherva, Mehsana, India

P

3
PVerification Technical Assistant, eiTRA, Ahmedabad, India

42TAbstract42T—From the last 40 years, Integrated
Circuit (IC) complexity has increased
drastically. By complexity, we refer here to
the number of transistors that can be
integrated on a single chip. As per the above
mentioned statements the design complexity
also increases as the transistor count
increases but size of transistor decreases and
more functionality gets added to chip in the
same space or in the reduced space. As the
functionality increases the time to verify the
design also increases. With the increase in
time to verify the design the market demand
is increased to reduce or to optimize this time
and there are various methods involved in
this verification. In this paper, we have tried
to describe various ways comparing their
effect on verification time and complete
design cycle, with the conclusion of selecting
modeling as better mechanism.

42TKeywords42T—RTL (Register Transfer Level), ASIC
(Application Specific Integrated Circuit), FPGA (Field
Programmable Gate Array) API (Application
Programming Interface), DUT (Design under Test), ABV
(Assertion-based Verification, TLM (transaction Level
Modeling)

I. INTRODUCTION
The complexity of today’s Systems-on-

Chip has increased drastically, making the use
of RTL (Register Transfer Level) design
methodologies time consuming and error prone
[1]. The ultimate goal of ASIC verification is to
obtain the highest possible level of confidence
in the correctness of a design. With increases in
complexity and gate count of an ASIC design,
functional verification has become one of the
greatest concerns of design engineers.
Verification has also become a serious

bottleneck in the VLSI design process. This
dual challenge of increasing complexity and
decreasing time is creating an urgent need for
the application of advanced verification
methods [2] [3].

In these paper we have divided some
verification methods which optimizes ASIC
verification into Hardware Based Method
giving review about Emulation and FPGA
prototyping, Re-usability Method that deals
with verification environment reuse,
Abstraction-based Method by making a level
above RTL called transaction level, Assertion
Based Method, Co-verification based method
by creating parallel hardware & software
execution environment and finally, the Model-
Based Methods which deals with creation of
models of important system components[3] .

The remainder of the paper is organized
as follows. Section II describes various ways
which optimizes ASIC design cycle timings.

II. METHODS OF OPTIMIZATION
A. Hardware Based Method

 The first approach to control the
verification bottleneck is to go for Hardware
based methods. The three main options are
simulation, emulation, and FPGA-based
prototyping [3].
 In software simulation based
verification, the HDL code of the digital logic is
simulated by the simulation software. Logic
simulation is the primary tool used for verifying
the logical correctness of a hardware design. In
many cases, logic simulation is the first activity
performed in the process of taking a hardware
design from concept to realization. Test-bench
can be written around the design under test

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015

 ISSN: 2395-3470
www.ijseas.com

460

(DUT) and inputs can be passed to the DUT
through the test-bench. Simulation is
completely generic and any hardware design
can be simulated. Setup is simple, quick and
easy highest level of controllability and
observability Designer gets complete feedback
of the verification process [2] [3].
 The ease of software simulation based
verification comes with an overhead of
simulation time which increases with the
complexity of the design. Time consumed in
simulating a digital design is a major drawback
of simulation based verification. The time
required to verify the design is proportional to
the maturity of the design. Early in the design
process at module level verification, incorrect
functionalities are usually found quickly and
easily through simulation. As the design
matures, it takes longer to find the errors.
Simulation time largely varies depending on the
software used, computer configuration and
coding style. It runs six to ten orders of
magnitude slower than the actual ASIC
hardware, which makes it an extremely time
consuming and inefficient technique [2] [3].
 Emulation based verification is a faster
verification tool compared to software
simulation based verification. Typically,
emulation based verification tools come with a
hardware accelerator card that helps to speed-up
simulation and a software program that
interfaces the card and the software simulation
tools. The hardware accelerator card has one or
more programmable devices and a set of fixed
interfaces. The software takes the HDL code of
DUT and partitions it to fit into the
programmable devices on the card. Speed
improvement in verification through emulation
comes with an overhead of extra cost for the
emulator hardware and design time. Hardware
emulation platforms can cost up to a million
dollars and can run only at a speed of 1 or 2
MHz This speed is 100 to 1000 times faster
than simulation but still too slow for some
applications like video processing. Considering
the advantages and disadvantages, emulation
based verification is a faster alternative
compared to software simulation but it is very
expensive. Also the speeds achieved do not give
real-time performance and are much slower

than expected for many applications. ASIC
designs like video codec require faster and cost-
effective verification techniques to reduce time
to market and design cost [2] [3].
 Field programmable gate array (FPGA)
is a semiconductor device containing
programmable logic blocks and programmable
switches that interconnect the logic blocks.
Also, FPGA are reconfigurable. These features
of FPGA allow them to be used for any
application and quick prototyping. ASIC
designs are generally time consuming and are
not cost effective for small designs and low
volume production. FPGAs were introduced as
an alternative to ASIC to shorten the time to
market and overcome huge production cost of
ASIC for small designs. As the gate density on
the FPGA increased, they were quickly adopted
into emulation based verification tools to
significantly enhance the speed of simulation
based verification techniques. FPGAs are also
used to prototype a fully verified ASIC design
for system level co-verification on custom
designed boards before going for actual
fabrication [3]. Many approaches and
techniques for system level hardware software
co-verification using FPGA have been
suggested in [4] [5] [6].

B. Re usability Method

Verification reuse offers great
opportunity to improve verification time. Reuse
can be done in three manners:
 a. Verification Components Reuse
 b. Verification Plan Reuse
 c. Verification Environment Reuse

The goal of verification reuse is to take
advantage of existing modules belonging to a
completed verification environment in other
projects and subsequent generations of the same
project. As such, the most fundamental
requirement & the limitation for effectively
reusing an object is that the part of the design
that is being targeted by that object is not
changed across different designs or multiple
generations of the same design [3].
 Verification components are in effect
mini verification environments. Each
component is targeted at a specific protocol,

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015

 ISSN: 2395-3470
www.ijseas.com

461

interface or processor. Their primary mission is
to reduce the effort required to construct and
validate a verification environment. To be
effective, verification components must be
constructed as reusable, configurable
environments which are packaged to plug-and-
play [3].
 Verification components are inherently
reusable since they are encapsulated and are
typically targeted at a standard specification.
They can be reused when moving from module-
level to chip-level to system-level verification
as well as when moving from project to project.
 Reusable components, such as patterns,
BFMs, drivers, monitors, system service and
scripts, can be reused either in different IP
verification platform or from IP standalone
platform to SoC verification platform. The
design methodology is critical to the reuse of
these components [7].

C. Abstraction-Based Method

 While today’s RTL design and
verification flows are a step up from the gate-
level flows of two decades ago, RTL flows are
straining to meet the demands of most product
teams. When designs are sourced and verified at
the register transfer level, IP reuse is difficult,
functional verification is lengthy and
cumbersome, and architectural decisions cannot
be confirmed prior to RTL verification. So here
idea is to move to next level of abstraction
above RTL to get a much-needed boost in
design productivity.
 That next level of abstraction is based
on transaction level modeling (TLM). By
creating TLM IP as their golden source, design
teams can ease IP creation and reuse, spend less
time and effort in functional verification, and
introduce fewer bugs. Design iterations are
reduced because TLM verification is much
faster than RTL verification, and architectural
choices can be verified well before RTL
verification [8] [9]. Further, transaction-level
models can be used for hardware/software co-
verification, and can be part of a virtual
platform for early software development. The
net result of all these advantages will be much
higher designer productivity.

 Transaction-level modeling uses
function calls, rather than signals or wires, for
inter-module communications [9]. It lets users
analyze transactions such as reads or writes
rather than worrying about the underlying logic
implementation and timing.
 At the register-transfer level, the
structure of finite state machines is fully
described. This means that one needs to commit
to micro-architectural details when writing
RTL, such as the memory structures, pipelines,
control states, or ALUs used in the resulting
implementation. This requirement results in a
longer and less reusable design and verification
flow. The only way here is to move to an
abstraction higher than RTL, which makes
faster IP creation and design reuse. Moreover,
by coding at a higher level, TLM IP requires
fewer lines of code [9], and thus has fewer
bugs. Functional bugs are detected and resolved
earlier in the design cycle. The total verification
effort can thus be greatly reduced.

D. Assertion-Based Method

 System Verilog have some features to
specify assertions of a system. Assertions
specify a behavior of the design or system.
Assertions are primarily used to validate the
behavior of a design. In further, they can be
used for providing generate input stimulus for
validation and functional coverage. Today,
assertion-based verification (ABV) has been
applied at multiple stages(levels) of design and
verification abstraction ranging from high level
assertions within transaction-level test benches
down to implementation level assertions
synthesized into emulation and
hardware[10][12].
 The assessment of the assertions is
guaranteed to be same between simulations,
which is event-based, and formal verification,
which is cycle-based. System Verilog allows
assertions to communicate information to the
test bench and allows the test bench to react to
the status of assertions without requiring a
separate API [10].

Assertion based Verification can also be
used to achieve the goal of reduction in
verification cycle time. Assertions are the

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015

 ISSN: 2395-3470
www.ijseas.com

462

internal test points that wait for a certain
predefined condition to arise and then notify the
designer about the occurrence of the same. One
of the major merit of assertions is that they
become a part of the design. Modern assertion
methods enable you to specify assertions and
monitors in line with the HDL code for the
module. Placing assertions in-line is main point
as inline assertion cannot get lost [9].
 Assertions can be utilized in various
ways. They can be included directly within the
hardware-description language (HDL) code that
comprises the register-transfer level (RTL)
description of the design or, they can be applied
from outside in the form of test benches, or
collections of test vectors, to check the response
of the design to stimulus, or to control a
stimulus generator or model checker. Assertions
are properties or facts describing the required
and forbidden behavior of a design. They are
“executable specifications” that are monitored
during simulation by assertion checkers
included in the design file [11].
 Assertion-based verification benefits
users by simplifying the diagnosis and detecting
bugs by localizing the occurrence of a suspected
bug. It thereby reduces simulation-debug time
significantly. Secondly, Self-checking code
helps a lot in reuse of design and Interface
assertions help find the interface issues early on
[14].

E. Co-Verification-Based Method

 Hardware/software co-verification is
one of the techniques that can be used to begin
the debugging process sooner, before physical
prototypes are available. Today, most designers
perform this only after the hardware has been
developed. According to earlier studies, the
sooner a bug is found in the design stage, the
less expensive it is to fix [15].
 This is especially true for SoC and ASIC
designs where the high level of integration
makes much of the design inaccessible to
traditional prototype debugging tools. While
there are debug facilities available for these
designs, they are limited to the kind of data that
can be gathered. On-chip debug buffers are
limited to the amount of data that can be

gathered. Some of these debugging facilities
can change the real-time aspects of the system
[15].
 This leads to the potential of finding
bugs that only manifest themselves when the
debugging monitors are turned off. These are
some of the hardest bugs to find. Using co-
verification, you should have complete control
over the system being debugged, as well as
complete visibility into the operation of the
hardware and software. An additional benefit is
that a software model of the system will not
contain any manufacturing defects. Often when
checking out your code on a physical prototype,
you will spend some time debugging hardware
and manufacturing problems as well as
debugging your code [15].

F. Model-Based Methods.

The last approach to analyze verification
time and perform system verification earlier in
the design process is to use model based design.
Model based design is a method that emulates
system [16] behavior using modeling and
simulation. In other words, a virtual abstraction
level is created. This abstraction level provides
valuable insight into the hardware and software
design.

In model-based design, a libraries of
design models at the component and system
levels are built. Then after we simulate these
models to enhance system behavior, to analyze
their designs, and automatically generate code
to embed in deployed systems, apart from these
models are also re-utilized for hardware-in-the-
loop and other testing approaches.

While following the traditional design
flow, a larger portion of the simulation and
debugging work tends to occur later in the
design, during HDL coding. With model based
design the model defines the code, and
therefore you are bonded to include in the
model every detail needed to define the
waveform.

Typically the models are built and tested
accordingly, and deal with the bugs and the
algorithmic issues as they occur. Debugging is
handled entirely during the modeling phase of

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015

 ISSN: 2395-3470
www.ijseas.com

463

the design, with a bit-true, cycle-true model
[17].

By enabling earlier verification, Model-
Based Design is helpful in teams to find defects,
validate requirements, and confirm that design
strategies are on track, and still there is time to
address any problems that are discovered.
Design defects and other issues discovered later
in which development process are expensive to
fix. When found early, these same problems can
often be resolved with minimal impact on the
schedule and the budget in Model-based design
approach.

Fig 1. Co-simulation between matlab, C &

System Verilog

By combining the above two Co-Simulation
process, the System Verilog-C Language-
MATLAB Co-Simulation was achieved. With
this step we combine the power of System
Verilog and MATLAB. To be more specific
here we have combined the System Verilog DPI
and MATLAB Application Programming
Interface, with C Language common between
the two bridges. This implementation creates a
wrapper of C around MATLAB Engine and
uses the DPI concept to communicate with SV
as shown in the figure above.

Here the simulator tool will execute the
SV code. When the DPI call to C Language
based import function is done then the resident
GCC compiler with Linux operating system is
called for the execution of the C code during
run time execution. Later the C code will have
the Engine related functions and so the
MATLAB Engine Library will be called. The
final control of the simulation however remains
with the System Verilog simulator. This was
possible according to the command line linking
library switches which were provided for
simulation. The following command at the
Linux terminal will launch the simulation.

Fig 2. Simulation Result

 As in above figure we can see the
simulation result of symmetric Fir filter, in
which Y_out_ref is generated using matlab and
Y_out is generated using Model Sim. And both
results are same. Here we have used DUT
which is written in System C and test bench
using system Verilog. And for co-simulation
between C and System Verilog, we have used
DPI-C method.

III SELECTION OF METHOD
Hence from the below difference and

the tools availability the combination of
Reusability, Assertion based method and model
based method is chosen for the project. For
Reusability I have used UVM methodology,
System Verilog for assertion, MATLAB and
System C for model based approach, c for co-
simulation of MATLAB and System Verilog.

A. Verification Estimates

Methods Verification Level of

 time Verification

 improvement

Hardware FPGA 25.00% ****

based Prototyping

2025% ****

Methods

Emulation

 based

Abstraction Based 17.00% Up to RTL

Method(TLM)

Assertion Based Method 50.00% Only RTL

Reusability 15-20 % At RTL

CoVerification Method Medium At Each

 Level

 (Application

 Base)

Model Based Methods Very high Any Level

CONCLUSION

By Different estimates, verification
constitutes up to 60-70% of a typical design
verification time and budget. The described
methods help to effectively decrease the
verification time. However each method has its
own limitations and demerits. By the results, it

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015

 ISSN: 2395-3470
www.ijseas.com

464

justifies that the best technique to reduce
verification time effort is model based method.
We believe that it would be a very useful
technique for reducing verification timings.

REFERENCE

[1].Zeineb Bel Hadj Amor, Laurence Pierre,

Dominique Borrionr, “System-on-Chip
Verification: TLM-to-RTL Assertions
Transformation”, 14516132, June 30 2014-
July 3 2014

[2].Basavaraj Mudigoudar,” FPGA Prototyping
for fast and efficient verification of ASIC
H.264 decoder”, The University of Texas at
Arlington, May 2006.

[3].Nirav R. Parmar, Vrushank M. Shah “Study
of Various Ways to Optimize ASIC Design
Cycle timings”, ISBN: 978-960-474-155-7

[4].S. Brown and J. Rose, “FPGA and CPLD
architectures: a tutorial”, IEEE Design &
Test of Computers, vol. 13, issue 2, pp. 42 –
57, Summer 1996.

[5].P.-A. Hsiung, “Hardware-software timing
co-verification of concurrent embedded real-
time systems”, IEE Proceedings on
Computers and Digital Techniques, vol. 147,
issue 2, pp. 83 – 92, Mar 2000.

[6].Y.Sungjoo et al., “Fast hardware-software
co-verification by optimistic execution of
real processor”, Proceedings of IEEE
Conference and Exhibition on Design,
Automation and Test, pp. 663 – 668, Mar
2000.

[7].Rui Wang , “Reuse issues in SoC
verification platform”, Pages: 685 - 688
Vol.2 , ISBN : 0-7803-7941-1 , 26-28 May
2004

[8].http://www.soccentral.com/PrintPage.asp?P
assedEntryID=18241

[9].Steve Brown, “TLM Driven Design and
Verification”, white paper,
www.cadence.com,June 2009.

[10].http://www.testbench.in/AS_00_INDEX.ht
ml

[11].ZocaloTech,www.zocalotech.com/files/ass
ertionverification_whitepaper.pdf

[12].https://verificationacademy.com/courses/as
sertion-based-verification

[13].Yangyang Li , Wuchen Wu , Ligang Hou ,
“A Study On the Assertion-Based
Verification of Digital IC” , 2009 Second
International Conference on Information
and Computing Science

[14]3T.3TMcmillan, K.: Assertion-Based
Verification, Cadence Berkeley Labs (2005)

[15].Russell Klein “Solving problems early on
using
Co-verification”, SoC Verification Business
Unit
Mentor Graphics Corp.,Nov 2004.N

[16]. The Power of Modeling, www.20sim.com
[17]. Advantages of Model-based design,

 www.xilinx.com
[18].http://www.design-

reuse.com/articles/16358/a-new-
methodology-for-hardware-software-co-
verification.html

[19].http://in.mathworks.com/solutions/verificat
ion-validation/

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Rui%20Wang.QT.&searchWithin=p_Author_Ids:37280231900&newsearch=true
http://www.20sim.com/

	I. Introduction
	II. Methods of Optimization
	III Selection of Method

